

Course guide 34962 - HS - Hamiltonian Systems

Last modified: 29/05/2025

Unit in charge: School of Mathematics and Statistics

Teaching unit: 749 - MAT - Department of Mathematics.

Degree: MASTER'S DEGREE IN ADVANCED MATHEMATICS AND MATHEMATICAL ENGINEERING (Syllabus 2010).

(Optional subject).

Academic year: 2025 ECTS Credits: 7.5 Languages: English

LECTURER

Coordinating lecturer: PAU MARTIN DE LA TORRE

Others:

PRIOR SKILLS

Knowledge of calculus, algebra and ordinary differential equations.

DEGREE COMPETENCES TO WHICH THE SUBJECT CONTRIBUTES

Specific:

- 1. RESEARCH. Read and understand advanced mathematical papers. Use mathematical research techniques to produce and transmit new results.
- 2. MODELLING. Formulate, analyse and validate mathematical models of practical problems by using the appropriate mathematical tools.
- 3. CALCULUS. Obtain (exact or approximate) solutions for these models with the available resources, including computational means.
- 4. CRITICAL ASSESSMENT. Discuss the validity, scope and relevance of these solutions; present results and defend conclusions.

Transversal:

- 5. SELF-DIRECTED LEARNING. Detecting gaps in one's knowledge and overcoming them through critical self-appraisal. Choosing the best path for broadening one's knowledge.
- 6. EFFICIENT ORAL AND WRITTEN COMMUNICATION. Communicating verbally and in writing about learning outcomes, thought-building and decision-making. Taking part in debates about issues related to the own field of specialization.
- 7. THIRD LANGUAGE. Learning a third language, preferably English, to a degree of oral and written fluency that fits in with the future needs of the graduates of each course.
- 8. TEAMWORK. Being able to work as a team player, either as a member or as a leader. Contributing to projects pragmatically and responsibly, by reaching commitments in accordance to the resources that are available.
- 9. EFFECTIVE USE OF INFORMATION RESOURCES. Managing the acquisition, structure, analysis and display of information from the own field of specialization. Taking a critical stance with regard to the results obtained.

TEACHING METHODOLOGY

Standard exposition in front of the blackboard, resolution of exercices, completion of a project and attendance to the JISD summer school http://www.ma1.upc.edu/recerca/jisd

LEARNING OBJECTIVES OF THE SUBJECT

To comprehend the basic foundations of the theory of Hamiltonian systems, and to understand its applications to Celestial Mechanics and other fields.

Date: 23/06/2025 **Page:** 1 / 4

STUDY LOAD

Туре	Hours	Percentage
Self study	127,5	68.00
Hours large group	60,0	32.00

Total learning time: 187.5 h

CONTENTS

Hamiltonian formalism

Description:

Hamiltonian dynamical systems: symplectic maps, symplectic manifolds. Linear Hamiltonian systems and their application to the study of stability of equilibrium points. Canonical transformations.

Full-or-part-time: 28h Theory classes: 10h Self study: 18h

Celestial mechanics

Description:

The two body problem, first integrals. Resolution. The three body problem, different coordinates. The restricted three body problem. Central configurations. Periodic orbits, invariant manifolds.

Full-or-part-time: 34h Theory classes: 12h Self study: 22h

Geometric theory and invariant objects of Hamiltonian systems

Description:

Continuous and discrete dynamical systems, Poincaré map. Flow box Theorem. Noether Theorem. Periodic orbits. Continuation of periodic orbits. Lyapunov Center Theorem.

Full-or-part-time: 24h Theory classes: 8h Self study: 16h

Integrable systems

Description:

Complete integrability and Liouville-Arnold theorem. Action-Angle coordinates. Quasi-periodic flows on a torus, resonances.

Full-or-part-time: 10h Theory classes: 4h Self study : 6h

Date: 23/06/2025 **Page:** 2 / 4

Quasi-integrable Hamiltonian systems

Description:

Examples of quasi-integrable systems. Small divisors and Diophantine inequalities. Averaging Theory. Lie Method. KAM Theory (Kolmogorov-Arnold Moser). Effective stability and Nekhoroshev theorem. Melnikov Potential. Arnold diffusion.

Full-or-part-time: 26h Theory classes: 8h Self study: 18h

Lagrangian systems and variational methods

Description:

Lagrangian systems. Legendre transformation. Principle of minimal action. Twist maps. Existence of periodic orbits. Aubry-Mather

Full-or-part-time: 12h Theory classes: 4h Self study: 8h

Hamiltonian Partial Differential Equations

Description:

Linear Hamiltonian Partial Differential Equations. Examples. Periodic, quasi-periodic and almost-periodic solutions. Nonlinear Hamiltonian Partial Differential Equations. Lyapunov stability/instability of invariant objects. Transfer of energy.

Full-or-part-time: 4h Theory classes: 2h Self study: 2h

- Interactions between Dynamical Systems and Partial Differential Equations

Description:

Summer School and Research workshop on topics between Dynamical Systems and Partial Differential Equations

Full-or-part-time: 49h 30m

Theory classes: 12h Self study : 37h 30m

ACTIVITIES

JISD summer school

Description:

Attendance to the JISD summer school

Specific objectives:

To learn from oustanding researchers a view of the state of the art in several research topics, interacting with students of the rest of Spain and of the World.

Date: 23/06/2025 **Page:** 3 / 4

GRADING SYSTEM

The students have to do some problems (60%) and a research work (25%). There will be also a final exam covering on the theoretical part of the subject (15%). Moreover, they will attend the JISD.

BIBLIOGRAPHY

Basic:

- Meyer, Kenneth R.; Hall, Glen R.; Offin, Dan. Introduction to Hamiltonian dynamical systems and the n-body problem [on line]. 2nd ed. New York: Springer-Verlag, 2009 [Consultation: 10/07/2023]. Available on: https://link-springer-com.recursos.biblioteca.upc.edu/book/10.1007/978-0-387-09724-4. ISBN 9780387097237.
- Arnold, V. I.; Kozlov, Valerii V.; Neishtadt, Anatoly I. Mathematical aspects of classical and celestial mechanics [on line]. 3rd ed. Berlin: Springer-Verlag, 2006 [Consultation: 10/07/2023]. Available on: https://link-springer-com.recursos.biblioteca.upc.edu/book/10.1007/978-3-540-48926-9. ISBN 3540282467.
- Treschev, Dmitry; Zubelevich, Oleg. Introduction to the perturbation theory of Hamiltonian systems [on line]. Berlin: Springer Verlag, 2010 [Consultation: 10/07/2023]. Available on: https://link-springer-com.recursos.biblioteca.upc.edu/book/10.1007/978-3-642-03028-4. ISBN 9783642030277.
- Celletti, Alessandra. Stability and chaos in celestial mechanics [on line]. Springer-Praxis, 2010 [Consultation: 10/07/2023]. Available on:

https://ebookcentral-proquest-com.recursos.biblioteca.upc.edu/lib/upcatalunya-ebooks/detail.action?pq-origsite=primo&docID=9932 77. ISBN 9783540851455.

- Wintner, Aurel. The Analytical foundations of celestial mechanics. Dover Publications, ISBN 978-0486780603.
- Katok, Anatole; Hasselblatt, Boris. Introduction to the modern theory of dynamical systems. Cambridge [etc.]: Cambridge University Press, 1997. ISBN 9780521575577.
- Berti, Massimiliano. Nonlinear oscillations of Hamiltonian PDEs [on line]. Boston, MA: Birkhäuser Boston, Inc, 2007 [Consultation: 10/07/2023]. Available on: https://link-springer-com.recursos.biblioteca.upc.edu/book/10.1007/978-0-8176-4681-3. ISBN 9780817646806.
- Marsden, Jerrold E; Ratiu, Tudor S. Introduction to mechanics and symmetry: a basic exposition of classical mechanical systems. 2a ed. New York [etc.]: Springer, 1999. ISBN 9780387986432.
- Kanuf, Andreas. Mathematical physics: classical mechanics. 1. Springer-Verlag, 2018. ISBN 9783662557723.

RESOURCES

Hyperlink:

- Grup de sistemes dinàmicshttps://recerca.upc.edu/sd. Pàgina web del Grup de Sistemes Dinàmics de la UPC on es descriuen diversos projectes i els investigadors que hi treballen així com diverses activitats relacionades

Date: 23/06/2025 **Page:** 4 / 4