Course guides
200101 - FVC - Complex Variable Functions

Unit in charge: School of Mathematics and Statistics
Teaching unit: 749 - MAT - Department of Mathematics.
Degree: BACHELOR'S DEGREE IN MATHEMATICS (Syllabus 2009). (Compulsory subject).
Academic year: 2020
ECTS Credits: 7.5
Languages: Catalan

LECTURER
Coordinating lecturer: JORDI VILLANUEVA CASTELLTORT
Others: Segon quadrimestre:
INMACULADA CONCEPCION BALDOMA BARRACA - M-A, M-B
JOSE TOMAS LAZARO OCHOA - CFIS
MARIA TERESA MARTINEZ-SEARA ALONSO - CFIS, M-A, M-B
JORDI VILLANUEVA CASTELLTORT - CFIS, M-A, M-B

DEGREE COMPETENCES TO WHICH THE SUBJECT CONtributes

Specific:
1. CE-2. Solve problems in Mathematics, through basic calculation skills, taking in account tools availability and the constraints of time and resources.
2. CE-3. Have the knowledge of specific programming languages and software.
3. CE-4. Have the ability to use computational tools as an aid to mathematical processes.

General:
4. CB-1. Demonstrate knowledge and understanding in Mathematics that is founded upon and extends that typically associated with Bachelor's level, and that provides a basis for originality in developing and applying ideas, often within a research context.
5. CB-2. Know how to apply their mathematical knowledge and understanding, and problem solving abilities in new or unfamiliar environments within broader or multidisciplinary contexts related to Mathematics.
6. CB-3. Have the ability to integrate knowledge and handle complexity, and formulate judgements with incomplete or limited information, but that include reflecting on social and ethical responsibilities linked to the application of their knowledge and judgements.
7. CG-1. Show knowledge and proficiency in the use of mathematical language.
8. CG-2. Construct rigorous proofs of some classical theorems in a variety of fields of Mathematics.
9. CG-3. Have the ability to define new mathematical objects in terms of others already know and ability to use these objects in different contexts.
10. CG-4. Translate into mathematical terms problems stated in non-mathematical language, and take advantage of this translation to solve them.
12. CG-6 Detect deficiencies in their own knowledge and pass them through critical reflection and choice of the best action to extend this knowledge.

Transversal:
11. SELF-DIRECTED LEARNING. Detecting gaps in one's knowledge and overcoming them through critical self-appraisal. Choosing the best path for broadening one's knowledge.

TEACHING METHODOLOGY
There are three one hour lectures and two one hour problem sessions per week.

LEARNING OBJECTIVES OF THE SUBJECT

(Section not available)
STUDY LOAD

<table>
<thead>
<tr>
<th>Type</th>
<th>Hours</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours small group</td>
<td>30.0</td>
<td>16.00</td>
</tr>
<tr>
<td>Hours large group</td>
<td>45.0</td>
<td>24.00</td>
</tr>
<tr>
<td>Self study</td>
<td>112.5</td>
<td>60.00</td>
</tr>
</tbody>
</table>

Total learning time: 187.5 h

CONTENTS

The Complex Plane

Description:
Complex numbers (representation, basic properties, successions, series). The complex plane and its topology.

Full-or-part-time: 5h
Practical classes: 5h

Holomorphic functions

Description:

Examples

Full-or-part-time: 16h
Theory classes: 10h
Practical classes: 6h

Local Cauchy theory

Description:

Full-or-part-time: 16h
Theory classes: 10h
Practical classes: 6h

Global Cauchy theory

Description:
Index of a curve with respect to a point. Homology. Global Cauchy’s theorem. Isolated singularities. Laurent series. Residue theorem and applications.

Full-or-part-time: 18h
Theory classes: 10h
Practical classes: 8h
Conformal applications and harmonic functions

Description:

Full-or-part-time: 14h
Theory classes: 10h
Practical classes: 4h

Other topics

Description:
Depending on the time available: Rudiments of complex dynamics. Linearization of holomorphic applications around a fixed point. Conjugation to a rotation of holomorphic circle maps.

Full-or-part-time: 5h
Theory classes: 5h

GRADING SYSTEM

There will be a mid-term exam (ME) and a final exam (FE).
The final grade (NF) will be given by the formula \(NF = \max(FE ; 0.3 \times ME + 0.7 \times FE) \).

An extra exam will take place on July for students that failed during the regular semester.

BIBLIOGRAPHY

Basic:
- Lang, S. Complex analysis. 4th.. Springer, 1999.

Complementary: