Course guide
200121 - TOP - Topology

Unit in charge: School of Mathematics and Statistics
Teaching unit: 749 - MAT - Department of Mathematics.

Degree: BACHELOR'S DEGREE IN MATHEMATICS (Syllabus 2009). (Compulsory subject).

Academic year: 2022 ECTS Credits: 7.5 Languages: Catalan

LECTURER
Coordinating lecturer: ENRIC VENTURA CAPELL

Others: Segon quadrimestre:
MARTA CASANELLAS RIUS - CFIS, M-A, M-B
JOSEP ELGUETA MONTO - CFIS, M-A
LLUIS VENA CROS - CFIS, M-A, M-B
ENRIC VENTURA CAPELL - CFIS, M-A, M-B

DEGREE COMPETENCES TO WHICH THE SUBJECT CONTRIBUTES

Specific:
1. CE-2. Solve problems in Mathematics, through basic calculation skills, taking in account tools availability and the constraints of time and resources.
2. CE-3. Have the knowledge of specific programming languages and software.
3. CE-4. Have the ability to use computational tools as an aid to mathematical processes.

General:
4. CB-1. Demonstrate knowledge and understanding in Mathematics that is founded upon and extends that typically associated with Bachelor's level, and that provides a basis for originality in developing and applying ideas, often within a research context.
5. CB-2. Know how to apply their mathematical knowledge and understanding, and problem solving abilities in new or unfamiliar environments within broader or multidisciplinary contexts related to Mathematics.
6. CB-3. Have the ability to integrate knowledge and handle complexity, and formulate judgements with incomplete or limited information, but that include reflecting on social and ethical responsibilities linked to the application of their knowledge and judgements.
7. CG-1. Show knowledge and proficiency in the use of mathematical language.
8. CG-2. Construct rigorous proofs of some classical theorems in a variety of fields of Mathematics.
9. CG-3. Have the ability to define new mathematical objects in terms of others already know and ability to use these objects in different contexts.
10. CG-4. Translate into mathematical terms problems stated in non-mathematical language, and take advantage of this translation to solve them.
12. CG-6 Detect deficiencies in their own knowledge and pass them through critical reflection and choice of the best action to extend this knowledge.

Transversal:
11. SELF-DIRECTED LEARNING. Detecting gaps in one's knowledge and overcoming them through critical self-appraisal. Choosing the best path for broadening one's knowledge.

TEACHING METHODOLOGY
(Section not available)

LEARNING OBJECTIVES OF THE SUBJECT
(Section not available)
STUDY LOAD

<table>
<thead>
<tr>
<th>Type</th>
<th>Hours</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self study</td>
<td>112,5</td>
<td>60.00</td>
</tr>
<tr>
<td>Hours small group</td>
<td>30,0</td>
<td>16.00</td>
</tr>
<tr>
<td>Hours large group</td>
<td>45,0</td>
<td>24.00</td>
</tr>
</tbody>
</table>

Total learning time: 187.5 h

CONTENTS

Metric spaces

Description:
Open and closed balls. Open sets. Continuous applications. Equivalent distances.

Full-or-part-time: 10h
Theory classes: 3h
Practical classes: 2h
Self study: 5h

Topological spaces

Description:

Full-or-part-time: 24h
Theory classes: 7h
Practical classes: 5h
Self study: 12h

Building topological spaces

Description:

Full-or-part-time: 24h
Theory classes: 7h
Practical classes: 5h
Self study: 12h

Compactness

Description:

Full-or-part-time: 14h
Theory classes: 4h
Practical classes: 3h
Self study: 7h
Connectedness

Description:

Full-or-part-time: 14h
- Theory classes: 4h
- Practical classes: 3h
- Self study: 7h

Introduction to homotopy

Description:
Introduction to the homotopy of continuous maps. Contractile spaces. Deformation retracts. The set of homotopic classes [X,Y]. The abelian group [S^1,S^1]: degree of a map.

Full-or-part-time: 20h
- Theory classes: 6h
- Practical classes: 4h
- Self study: 10h

Applications to plane topology

Description:
Index of a closed curve. The Poincaré-Böhl and Rouche theorems. The Bolzano theorem and the Brouwer fixed point theorem. The fundamental theorem of algebra. The Borsuk-Ulam theorem. Invariance of the dimension.

Full-or-part-time: 22h
- Theory classes: 7h
- Practical classes: 4h
- Self study: 11h

Compact surfaces classification

Description:

Full-or-part-time: 22h
- Theory classes: 7h
- Practical classes: 4h
- Self study: 11h

GRADING SYSTEM
BIBLIOGRAPHY

Basic:

Complementary: