Course guides
200204 - GA - Algebraic Geometry

Unit in charge: School of Mathematics and Statistics
Teaching unit: 749 - MAT - Department of Mathematics.
Degree: BACHELOR'S DEGREE IN MATHEMATICS (Syllabus 2009). (Optional subject).
Academic year: 2021 ECTS Credits: 6.0 Languages: Catalan

LECTURER

Coordinating lecturer: PEDRO PASCUAL GAINZA
Others: Segon quadrimestre:
 PEDRO PASCUAL GAINZA - M-A

DEGREE COMPETENCES TO WHICH THE SUBJECT CONTRIBUTES

Specific:
3. CE-2. Solve problems in Mathematics, through basic calculation skills, taking in account tools availability and the constraints of
time and resources.
4. CE-4. Have the ability to use computational tools as an aid to mathematical processes.
5. Ability to solve problems from academic, technical, financial and social fields through mathematical methods.

Generic:
1. CB-4. Have the ability to communicate their conclusions, and the knowledge and rationale underpinning these to specialist and
non-specialist audiences clearly and unambiguously.
2. To have developed those learning skills necessary to undertake further interdisciplinary studies with a high degree of autonomy in
scientific disciplines in which Mathematics have a significant role.
6. CG-1. Show knowledge and proficiency in the use of mathematical language.
7. CG-2. Construct rigorous proofs of some classical theorems in a variety of fields of Mathematics.
8. CG-3. Have the ability to define new mathematical objects in terms of others already know and ability to use these objects in
different contexts.
9. CG-4. Translate into mathematical terms problems stated in non-mathematical language, and take advantage of this translation to
solve them.
10. CG-6 Detect deficiencies in their own knowledge and pass them through critical reflection and choice of the best action to extend
 this knowledge.

Transversal:
11. EFFICIENT ORAL AND WRITTEN COMMUNICATION. Communicating verbally and in writing about learning outcomes, thought-
building and decision-making. Taking part in debates about issues related to the own field of specialization.
12. SELF-DIRECTED LEARNING. Detecting gaps in one's knowledge and overcoming them through critical self-appraisal. Choosing the
 best path for broadening one's knowledge.

TEACHING METHODOLOGY

(Section not available)

LEARNING OBJECTIVES OF THE SUBJECT

(Section not available)
STUDY LOAD

<table>
<thead>
<tr>
<th>Type</th>
<th>Hours</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self study</td>
<td>90.0</td>
<td>60.00</td>
</tr>
<tr>
<td>Hours small group</td>
<td>30.0</td>
<td>20.00</td>
</tr>
<tr>
<td>Hours large group</td>
<td>30.0</td>
<td>20.00</td>
</tr>
</tbody>
</table>

Total learning time: 150 h

CONTENTS

Algebraic plane curves

Description:

Full-or-part-time: 37h 30m
Theory classes: 7h 30m
Laboratory classes: 7h 30m
Self study: 22h 30m

Singularities of plane curves

Description:

Full-or-part-time: 37h 30m
Theory classes: 7h 30m
Laboratory classes: 7h 30m
Self study: 22h 30m

Riemann surfaces

Description:

Full-or-part-time: 37h 30m
Theory classes: 7h 30m
Laboratory classes: 7h 30m
Self study: 22h 30m
The Riemann-Roch theorem

Description:
Linear series and divisors. Associate divisors to a function and to a differential form. Canonical linear series: degree and dimension. Riemann-Roch theorem. Applications: elliptic curves, low genus curves, the canonical embedding, Weierstrass points, Jacobian of a curve.

Full-or-part-time: 37h 30m
Theory classes: 7h 30m
Laboratory classes: 7h 30m
Self study: 22h 30m

GRADING SYSTEM

Work in Problem classes, projects during the term and a final work or exam. The student can request a final exam. The qualification of the course will be based on the work done by the student in the class of problems, the elaboration of some small project during the course (continuous assessment, up to 60% of the overall mark), and a final test, which will consist of an exam or the preparation of a project. Students may decide to perform only a final exam.

BIBLIOGRAPHY

Basic:

Complementary: