Course guides
200245 - CRIPTOL - Cryptology

Unit in charge: School of Mathematics and Statistics
Teaching unit: 749 - MAT - Department of Mathematics.
Degree: BACHELOR’S DEGREE IN MATHEMATICS (Syllabus 2009). (Optional subject).
Academic year: 2020 ECTS Credits: 6.0 Languages: English

LECTURER

Coordinating lecturer: CARLES PADRO LAIMON

Others: Primer quadrimestre:
CARLES PADRO LAIMON - M-A
JORGE LUIS VILLAR SANTOS - M-A

PRIOR SKILLS

Some basic knowledge of algebra (group theory, finite fields, etc) and complexity theory is desirable, but not strictly required

DEGREE COMPETENCES TO WHICH THE SUBJECT CONTRIBUTES

Specific:
GM-CE2. CE-2. Solve problems in Mathematics, through basic calculation skills, taking in account tools availability and the constraints of time and resources.
GM-CE4. CE-4. Have the ability to use computational tools as an aid to mathematical processes.
GM-CE6. Ability to solve problems from academic, technical, financial and social fields through mathematical methods.

General:
GM-CB5. To have developed those learning skills necessary to undertake further interdisciplinary studies with a high degree of autonomy in scientific disciplines in which Mathematics have a significant role.
GM-CG1. CG-1. Show knowledge and proficiency in the use of mathematical language.
GM-CB4. CB-4. Have the ability to communicate their conclusions, and the knowledge and rationale underpinning these to specialist and non-specialist audiences clearly and unambiguously.
GM-CG2. CG-2. Construct rigorous proofs of some classical theorems in a variety of fields of Mathematics.
GM-CG3. CG-3. Have the ability to define new mathematical objects in terms of others already know and ability to use these objects in different contexts.
GM-CG4. CG-4. Translate into mathematical terms problems stated in non-mathematical language, and take advantage of this translation to solve them.
GM-CG6. CG-6 Detect deficiencies in their own knowledge and pass them through critical reflection and choice of the best action to extend this knowledge.

Transversal:
04 COE. EFFICIENT ORAL AND WRITTEN COMMUNICATION. Communicating verbally and in writing about learning outcomes, thought-building and decision-making. Taking part in debates about issues related to the own field of specialization.
07 AAT. SELF-DIRECTED LEARNING. Detecting gaps in one’s knowledge and overcoming them through critical self-appraisal. Choosing the best path for broadening one’s knowledge.

TEACHING METHODOLOGY
LEARNING OBJECTIVES OF THE SUBJECT

STUDY LOAD

<table>
<thead>
<tr>
<th>Type</th>
<th>Hours</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours large group</td>
<td>30,0</td>
<td>20.00</td>
</tr>
<tr>
<td>Self study</td>
<td>90,0</td>
<td>60.00</td>
</tr>
<tr>
<td>Hours small group</td>
<td>30,0</td>
<td>20.00</td>
</tr>
</tbody>
</table>

Total learning time: 150 h

CONTENTS

Introduction

Description:

Full-or-part-time: 15h
Theory classes: 3h
Laboratory classes: 3h
Self study : 9h

Symmetric Key Cryptography

Description:

Full-or-part-time: 22h 30m
Theory classes: 4h 30m
Laboratory classes: 4h 30m
Self study : 13h 30m

Computational Problems for Cryptography

Description:

Full-or-part-time: 22h 30m
Theory classes: 4h 30m
Laboratory classes: 4h 30m
Self study : 13h 30m
Public Key Cryptography

Description:

Full-or-part-time: 22h 30m
Theory classes: 4h 30m
Laboratory classes: 4h 30m
Self study: 13h 30m

Security Models

Description:

Full-or-part-time: 22h 30m
Theory classes: 4h 30m
Laboratory classes: 4h 30m
Self study: 13h 30m

Other Cryptographic Primitives

Description:

Full-or-part-time: 22h 30m
Theory classes: 4h 30m
Laboratory classes: 4h 30m
Self study: 13h 30m

Advanced Topics

Description:

Full-or-part-time: 22h 30m
Theory classes: 4h 30m
Laboratory classes: 4h 30m
Self study: 13h 30m

GRADING SYSTEM

30% final exam, 40% final report and oral presentation, 30% deliverables
BIBLIOGRAPHY

Basic: