Course guides

34950 - CALG - Commutative Algebra

<table>
<thead>
<tr>
<th>Unit in charge:</th>
<th>School of Mathematics and Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teaching unit:</td>
<td>749 - MAT - Department of Mathematics.</td>
</tr>
</tbody>
</table>

Degree:
MASTER'S DEGREE IN ADVANCED MATHEMATICS AND MATHEMATICAL ENGINEERING (Syllabus 2010). (Optional subject).

Academic year: 2021 **ECTS Credits:** 7.5 **Languages:** English

LECTURER

- **Coordinating lecturer:** JOSEP ALVAREZ MONTANER
- **Others:** Primer quadrimestre:
 - JOSEP ALVAREZ MONTANER - A

PRIOR SKILLS

Linear algebra, algebraic structures, topology.

REQUIREMENTS

The two first years of a degree in mathematics.

DEGREE COMPETENCES TO WHICH THE SUBJECT CONTRIBUTES

Specific:
1. RESEARCH. Read and understand advanced mathematical papers. Use mathematical research techniques to produce and transmit new results.
2. CALCULUS. Obtain (exact or approximate) solutions for these models with the available resources, including computational means.
3. CRITICAL ASSESSMENT. Discuss the validity, scope and relevance of these solutions; present results and defend conclusions.

Transversal:
4. SELF-DIRECTED LEARNING. Detecting gaps in one's knowledge and overcoming them through critical self-appraisal. Choosing the best path for broadening one's knowledge.
5. EFFICIENT ORAL AND WRITTEN COMMUNICATION. Communicating verbally and in writing about learning outcomes, thought-building and decision-making. Taking part in debates about issues related to the own field of specialization.
6. THIRD LANGUAGE. Learning a third language, preferably English, to a degree of oral and written fluency that fits in with the future needs of the graduates of each course.
7. TEAMWORK. Being able to work as a team player, either as a member or as a leader. Contributing to projects pragmatically and responsibly, by reaching commitments in accordance to the resources that are available.
8. EFFECTIVE USE OF INFORMATION RESOURCES. Managing the acquisition, structure, analysis and display of information from the own field of specialization. Taking a critical stance with regard to the results obtained.

TEACHING METHODOLOGY

Teaching Classes, resolution of problems
LEARNING OBJECTIVES OF THE SUBJECT

Basic course in Commutative Algebra.
An introduction to the theory of rings, ideals and modules.
Some basics on local algebra.

STUDY LOAD

<table>
<thead>
<tr>
<th>Type</th>
<th>Hours</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours large group</td>
<td>60,0</td>
<td>32.00</td>
</tr>
<tr>
<td>Self study</td>
<td>127,5</td>
<td>68.00</td>
</tr>
</tbody>
</table>

Total learning time: 187.5 h

CONTENTS

Rings and ideals

Description:
Basics on ring theory and ideals.

Full-or-part-time: 28h 20m
Theory classes: 15h
Self study : 13h 20m

Modules

Description:
General properties of modules.
Modules of fractions. Chain conditions. Homomorphisms and tensor product.

Full-or-part-time: 24h
Theory classes: 12h
Self study : 12h

Algebraic varieties

Description:
The spectrum of a ring. Zariski topology.

Full-or-part-time: 24h
Theory classes: 12h
Self study : 12h

Introduction to homological algebra

Description:

Full-or-part-time: 24h
Theory classes: 12h
Self study : 12h
Local algebra

Description:
Regular sequences. Depth.
Homological characterizations.
Regular rings, Gorenstein rings, Cohen-Macaulay rings

Full-or-part-time: 18h 40m
Theory classes: 9h
Self study : 9h 40m

GRADING SYSTEM

The qualification will be based on:
Active participation of the student during the course,
Resolution of assigned exercises
Exposition of a directed work in which the student develops some material related to the course.

If necessary, a final exam

BIBLIOGRAPHY

Basic: