Course guide
34952 - AG - Algebraic Geometry

Unit in charge: School of Mathematics and Statistics
Teaching unit: 749 - MAT - Department of Mathematics.

Degree: MASTER'S DEGREE IN ADVANCED MATHEMATICS AND MATHEMATICAL ENGINEERING (Syllabus 2010).

Academic year: 2023 ECTS Credits: 7.5 Languages: English

LECTURER
Coordinating lecturer: MARIA ALBERICH CARRAMIÑANA
Others: Segon quadrimestre: MARIA ALBERICH CARRAMIÑANA - A

PRIOR SKILLS
Aquaintance with mathematical computations, both by hand and with a computer, and mathematical reasoning, including proofs.

REQUIREMENTS
Basic abstract Algebra, Topology and Differential Geometry.

DEGREE COMPETENCES TO WHICH THE SUBJECT CONTRIBUTES

Specific:
1. RESEARCH. Read and understand advanced mathematical papers. Use mathematical research techniques to produce and transmit new results.
2. CALCULUS. Obtain (exact or approximate) solutions for these models with the available resources, including computational means.
3. CRITICAL ASSESSMENT. Discuss the validity, scope and relevance of these solutions; present results and defend conclusions.

Transversal:
4. SELF-DIRECTED LEARNING. Detecting gaps in one’s knowledge and overcoming them through critical self-appraisal. Choosing the best path for broadening one’s knowledge.
5. EFFICIENT ORAL AND WRITTEN COMMUNICATION. Communicating verbally and in writing about learning outcomes, thought-building and decision-making. Taking part in debates about issues related to the own field of specialization.
6. THIRD LANGUAGE. Learning a third language, preferably English, to a degree of oral and written fluency that fits in with the future needs of the graduates of each course.
7. EFFECTIVE USE OF INFORMATION RESOURCES. Managing the acquisition, structure, analysis and display of information from the own field of specialization. Taking a critical stance with regard to the results obtained.

TEACHING METHODOLOGY
Approximately 50% of class time will be dedicated to interactive master classes, in which the lecturer will discuss course topics and propose small challenges and questions to solve. The other half of the class time will be structured as a problem-solving session, in which students will solve problems from a proposed list on the blackboard, based on the course syllabus, and their solutions will be discussed by the class.
LEARNING OBJECTIVES OF THE SUBJECT

The main objective of the course is to introduce students to local algebraic geometry, with a focus on plane curve singularities. It aims to provide insight into the singularity theory of plane curves and the geometric theory of valuations of the ring of convergent series of two variables over the complex numbers. The course will demonstrate that singular points of algebraic curves in the complex plane is a meeting point for various areas of mathematics.

The course will heavily rely on examples, emphasizing the geometric significance of the subject. The specific topics for the final projects will be determined based on the students' interests.

STUDY LOAD

<table>
<thead>
<tr>
<th>Type</th>
<th>Hours</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self study</td>
<td>127.5</td>
<td>68.00</td>
</tr>
<tr>
<td>Hours large group</td>
<td>60.0</td>
<td>32.00</td>
</tr>
</tbody>
</table>

Total learning time: 187.5 h

CONTENTS

Chapter 1: Parametrizing branches of plane curves

Description:

Full-or-part-time: 23h
Theory classes: 10h
Self study : 13h

Chapter 2: Infinitely near points and resolutions of singularities

Description:

Full-or-part-time: 23h
Theory classes: 10h
Self study : 13h

Chapter 3: Topological classification of singularities

Description:

Full-or-part-time: 23h
Theory classes: 10h
Self study : 13h
Chapter 4: Constructions on the resolution tree

Description:

Full-or-part-time: 18h
Theory classes: 8h
Self study : 10h

Chapter 5: Analytic classification of plane curves

Description:

Full-or-part-time: 18h
Theory classes: 8h
Self study : 10h

Chapter 6: Valuations and complete ideals

Description:
Classification of valuations. Zariski decomposition of complete ideals.

Full-or-part-time: 18h
Theory classes: 8h
Self study : 10h

Chapter 7: Final projects

Description:
The final essays of the course on the topics chosen by the students will be presented by the students themselves and commented by the course lecturers.

Full-or-part-time: 25h
Theory classes: 5h
Self study : 20h

GRADING SYSTEM

Students who solve a sufficient number of problems on the blackboard during the problem-solving class will pass the course. If they wish to improve their grade from a passing grade to a higher score, they will be assigned a final project. The final project will involve studying, writing an essay and delivering a lecture on an additional topic towards the end of the course.

Students who have not actively participated enough in the problem-solving class, or still wish to improve their grade even after completing the problem class and final project, will be required to take a final exam lasting approximately 4 hours.
EXAMINATION RULES.

The problem list for participation in the problem-solving class will be published at the beginning of each course unit. Students are expected to prepare these problems in advance at home.

The topics for optional final projects aimed at increasing grades will be proposed around Easter. Students will be responsible for preparing the lecture and the essay of the final project independently at home.

Students who choose to take the final exam will be required to do so without any notes, books, or other materials whatsoever.

BIBLIOGRAPHY

Basic:

Complementary: