34955 - COMB - Combinatorics

Coordinating unit: 200 - FME - School of Mathematics and Statistics
Teaching unit: 749 - MAT - Department of Mathematics
Academic year: 2017
Degree: MASTER'S DEGREE IN ADVANCED MATHEMATICS AND MATHEMATICAL ENGINEERING (Syllabus 2010). (Teaching unit Optional)
ECTS credits: 7,5
Teaching languages: English

Teaching staff

Coordinator: MARCOS NOY SERRANO
Others: Segon quadrimestre:
 MARCOS NOY SERRANO - A
 ORIOL SERRA ALBO - A

Prior skills

Basic calculus and linear algebra. Notions of probability.

Degree competences to which the subject contributes

Specific:
1. RESEARCH. Read and understand advanced mathematical papers. Use mathematical research techniques to produce and transmit new results.
2. CALCULUS. Obtain (exact or approximate) solutions for these models with the available resources, including computational means.
3. CRITICAL ASSESSMENT. Discuss the validity, scope and relevance of these solutions; present results and defend conclusions.

Transversal:
4. SELF-DIRECTED LEARNING. Detecting gaps in one's knowledge and overcoming them through critical self-appraisal. Choosing the best path for broadening one's knowledge.
5. EFFICIENT ORAL AND WRITTEN COMMUNICATION. Communicating verbally and in writing about learning outcomes, thought-building and decision-making. Taking part in debates about issues related to the own field of specialization.
6. THIRD LANGUAGE. Learning a third language, preferably English, to a degree of oral and written fluency that fits in with the future needs of the graduates of each course.
7. TEAMWORK. Being able to work as a team player, either as a member or as a leader. Contributing to projects pragmatically and responsibly, by reaching commitments in accordance to the resources that are available.
8. EFFECTIVE USE OF INFORMATION RESOURCES. Managing the acquisition, structure, analysis and display of information from the own field of specialization. Taking a critical stance with regard to the results obtained.

Teaching methodology

There will be a lecture each week, followed by a problem session.

Learning objectives of the subject

To use algebraic, probabilistic and analytic methods for studying combinatorial structures. The main topics of study are:
partially ordered sets, extremal set theory, finite geometries, matroids, Ramsey theory and enumerative combinatorics.

<table>
<thead>
<tr>
<th>Study load</th>
<th>Hours large group:</th>
<th>Self study:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total learning time:</td>
<td>187h 30m</td>
<td>60h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>127h 30m</td>
</tr>
<tr>
<td></td>
<td></td>
<td>32.00%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>68.00%</td>
</tr>
</tbody>
</table>
Content

Partially ordered sets

Learning time: 24h 40m
- Practical classes: 4h
- Laboratory classes: 4h
- Self study: 16h 40m

Description:
Sperner's theorem. LYM inequalities. Bollobás's theorem. Dilworth's theorem

Extremal set theory

Learning time: 24h 40m
- Theory classes: 4h
- Laboratory classes: 4h
- Self study: 16h 40m

Description:
Theorems of Baranyai, Erdős-de Bruijn and Erdős-Ko-Rado

Linear algebra methods in combinatorics

Learning time: 18h 30m
- Theory classes: 3h
- Laboratory classes: 3h
- Self study: 12h 30m

Description:
The polynomial method and applications. Fisher's theorem. Equiangular lines, sets with few differences

Finite geometries

Learning time: 18h 30m
- Theory classes: 3h
- Laboratory classes: 3h
- Self study: 12h 30m

Description:
Matroids

Description:
Axioms. Transversal matroids. Greedy algorithms. The Tutte polynomial

<table>
<thead>
<tr>
<th>Learning time: 18h 30m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory classes: 3h</td>
</tr>
<tr>
<td>Laboratory classes: 3h</td>
</tr>
<tr>
<td>Self study: 12h 30m</td>
</tr>
</tbody>
</table>

Probabilistic methods in combinatorics

Description:
Permanents, transversals, hypergraph coloring. Monotone properties and threshold functions

<table>
<thead>
<tr>
<th>Learning time: 18h 30m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory classes: 3h</td>
</tr>
<tr>
<td>Laboratory classes: 3h</td>
</tr>
<tr>
<td>Self study: 12h 30m</td>
</tr>
</tbody>
</table>

Ramsey theory

Description:
Theorems of Ramsey and Hales-Jewett. Theorems of Schur, Van der Waerden and Rado.

<table>
<thead>
<tr>
<th>Learning time: 31h 40m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory classes: 5h</td>
</tr>
<tr>
<td>Laboratory classes: 5h</td>
</tr>
<tr>
<td>Self study: 21h 40m</td>
</tr>
</tbody>
</table>

Enumerative combinatorics

Description:
Symbolic and analytic methods. Symmetries and Pólya theory.

<table>
<thead>
<tr>
<th>Learning time: 32h 30m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory classes: 5h</td>
</tr>
<tr>
<td>Laboratory classes: 5h</td>
</tr>
<tr>
<td>Self study: 22h 30m</td>
</tr>
</tbody>
</table>

Qualification system

Grading will be based on the solution of exercises. Eventually there will be a final examination.
Bibliography

Basic: