34955 - COMB - Combinatorics

Coordinating unit: 200 - FME - School of Mathematics and Statistics
Teaching unit: 749 - MAT - Department of Mathematics
Academic year: 2019
Degree: MASTER'S DEGREE IN ADVANCED MATHEMATICS AND MATHEMATICAL ENGINEERING (Syllabus 2010). (Teaching unit Optional)
ECTS credits: 7.5
Teaching languages: English

Teaching staff

Coordinator: ORIOL SERRA ALBO
Others: Segon quadrimestre:
- JUAN JOSÉ RUE PERNA - A
- ORIOL SERRA ALBO - A

Prior skills

Basic calculus and linear algebra. Notions of probability.

Degree competences to which the subject contributes

Specific:
1. **RESEARCH.** Read and understand advanced mathematical papers. Use mathematical research techniques to produce and transmit new results.
2. **CALCULUS.** Obtain (exact or approximate) solutions for these models with the available resources, including computational means.
3. **CRITICAL ASSESSMENT.** Discuss the validity, scope and relevance of these solutions; present results and defend conclusions.

Transversal:
4. **SELF-DIRECTED LEARNING.** Detecting gaps in one's knowledge and overcoming them through critical self-appraisal. Choosing the best path for broadening one's knowledge.
5. **EFFICIENT ORAL AND WRITTEN COMMUNICATION.** Communicating verbally and in writing about learning outcomes, thought-building and decision-making. Taking part in debates about issues related to the own field of specialization.
6. **THIRD LANGUAGE.** Learning a third language, preferably English, to a degree of oral and written fluency that fits in with the future needs of the graduates of each course.
7. **TEAMWORK.** Being able to work as a team player, either as a member or as a leader. Contributing to projects pragmatically and responsibly, by reaching commitments in accordance to the resources that are available.
8. **EFFECTIVE USE OF INFORMATION RESOURCES.** Managing the acquisition, structure, analysis and display of information from the own field of specialization. Taking a critical stance with regard to the results obtained.

Teaching methodology

There will be a lecture each week, followed by a problem session.

Learning objectives of the subject

To use algebraic, probabilistic and analytic methods for studying combinatorial structures. The main topics of study are:
34955 - COMB - Combinatorics

partially ordered sets, extremal set theory, finite geometries, matroids, Ramsey theory and enumerative combinatorics.

Study load

<table>
<thead>
<tr>
<th></th>
<th>Hours large group:</th>
<th>Self study:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Total learning time:</td>
<td>187h 30m</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>60h</td>
<td>127h 30m</td>
<td></td>
</tr>
<tr>
<td></td>
<td>32.00%</td>
<td>68.00%</td>
<td></td>
</tr>
</tbody>
</table>
Content

<table>
<thead>
<tr>
<th>Partially ordered sets</th>
<th>Learning time: 24h 40m</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Practical classes: 4h</td>
</tr>
<tr>
<td></td>
<td>Laboratory classes: 4h</td>
</tr>
<tr>
<td></td>
<td>Self study: 16h 40m</td>
</tr>
</tbody>
</table>

Description:
Sperner's theorem. LYM inequalities. Bollobás's theorem. Dilworth's theorem

<table>
<thead>
<tr>
<th>Extremal set theory</th>
<th>Learning time: 24h 40m</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Theory classes: 4h</td>
</tr>
<tr>
<td></td>
<td>Laboratory classes: 4h</td>
</tr>
<tr>
<td></td>
<td>Self study: 16h 40m</td>
</tr>
</tbody>
</table>

Description:
Theorems of Baranyai, Erdos-de Bruijn and Erdos-Ko-Rado

<table>
<thead>
<tr>
<th>Linear algebra methods in combinatorics</th>
<th>Learning time: 18h 30m</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Theory classes: 3h</td>
</tr>
<tr>
<td></td>
<td>Laboratory classes: 3h</td>
</tr>
<tr>
<td></td>
<td>Self study: 12h 30m</td>
</tr>
</tbody>
</table>

Description:
The polynomial method and applications. Fisher's theorem. Equiangular lines, sets with few differences

<table>
<thead>
<tr>
<th>Finite geometries</th>
<th>Learning time: 18h 30m</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Theory classes: 3h</td>
</tr>
<tr>
<td></td>
<td>Laboratory classes: 3h</td>
</tr>
<tr>
<td></td>
<td>Self study: 12h 30m</td>
</tr>
</tbody>
</table>

Description:
Matroids

Learning time: 18h 30m
Theory classes: 3h
Laboratory classes: 3h
Self study: 12h 30m

Description:
Axioms. Transversal matroids. Greedy algorithms. The Tutte polynomial

Probabilistic methods in combinatorics

Learning time: 18h 30m
Theory classes: 3h
Laboratory classes: 3h
Self study: 12h 30m

Description:
Permanents, transversals, hypergraph coloring. Monotone properties and threshold functions

Ramsey theory

Learning time: 31h 40m
Theory classes: 5h
Laboratory classes: 5h
Self study: 21h 40m

Description:
Theorems of Ramsey and Hales-Jewett. Theorems of Schur, Van der Waerden and Rado.

Enumerative combinatorics

Learning time: 32h 30m
Theory classes: 5h
Laboratory classes: 5h
Self study: 22h 30m

Description:
Symbolic and analytic methods. Symmetries and Pólya theory.

Qualification system

Grading will be based on the solution of exercises. Eventually there will be a final examination.
34955 - COMB - Combinatorics

Bibliography

Basic: