34965 - NMPDE - Numerical Methods for Partial Differential Equations

Coordinating unit: 200 - FME - School of Mathematics and Statistics
Teaching unit: 749 - MAT - Department of Mathematics
751 - DECA - Department of Civil and Environmental Engineering

Academic year: 2018
Degree: MASTER'S DEGREE IN ADVANCED MATHEMATICS AND MATHEMATICAL ENGINEERING (Syllabus 2010). (Teaching unit Optional)
ECTS credits: 7,5
Teaching languages: English

Teaching staff
Coordinator: SONIA FERNANDEZ MENDEZ
Others: Primer quadrimestre:
SONIA FERNANDEZ MENDEZ - A
ABEL GARGALLO PEIRO - A

Prior skills
Basics on numerical methods, differential equations and calculus.

Degree competences to which the subject contributes

Specific:
1. RESEARCH. Read and understand advanced mathematical papers. Use mathematical research techniques to produce and transmit new results.
2. MODELLING. Formulate, analyse and validate mathematical models of practical problems by using the appropriate mathematical tools.
3. CALCULUS. Obtain (exact or approximate) solutions for these models with the available resources, including computational means.
4. CRITICAL ASSESSMENT. Discuss the validity, scope and relevance of these solutions; present results and defend conclusions.

Transversal:
5. SELF-DIRECTED LEARNING. Detecting gaps in one's knowledge and overcoming them through critical self-appraisal. Choosing the best path for broadening one's knowledge.
6. EFFICIENT ORAL AND WRITTEN COMMUNICATION. Communicating verbally and in writing about learning outcomes, thought-building and decision-making. Taking part in debates about issues related to the own field of specialization.
7. THIRD LANGUAGE. Learning a third language, preferably English, to a degree of oral and written fluency that fits in with the future needs of the graduates of each course.
8. TEAMWORK. Being able to work as a team player, either as a member or as a leader. Contributing to projects pragmatically and responsibly, by reaching commitments in accordance to the resources that are available.
9. EFFECTIVE USE OF INFORMATION RESOURCES. Managing the acquisition, structure, analysis and display of information from the own field of specialization. Taking a critical stance with regard to the results obtained.

Teaching methodology
Lectures, practical work at computer room, exercises and home works.
This course is an introduction to numerical methods for the solution of partial differential equations, with application to applied sciences, engineering and biosciences.

The course includes the theoretical basis of the Finite Element Method (FEM) for the solution of elliptic and parabolic equations, and an introduction to stabilization techniques for convection-dominated problems, the FEM for compressible flow problems, numerical methods for first-order conservation laws (Finite Volumes, Discontinuous Galerkin) and advanced discretization techniques (such as meshless methods, X-FEM or DG methods).

The course will include frontal lectures and exercises, as well as computer sessions aimed at introducing the bases of the programming of the numerical methods.

Study load

<table>
<thead>
<tr>
<th>Total learning time: 187h 30m</th>
<th>Hours large group:</th>
<th>60h</th>
<th>32.00%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Self study:</td>
<td>127h 30m</td>
<td>68.00%</td>
</tr>
</tbody>
</table>
Content

<table>
<thead>
<tr>
<th>Fundamentals of Finite Element Methods (FEM)</th>
<th>Learning time: 20h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theoretical classes: 10h</td>
<td>Laboratory classes: 10h</td>
</tr>
</tbody>
</table>

Description:
- Basic concepts of the Finite Element Method (FEM) for elliptic and parabolic equations: strong and weak form, discretization, implementation, functional analysis tools, error bounds and convergence, time integration for parabolic equations.
- Application to the numerical modeling of flow in porous medium, and potential flow.
- Introduction to a posteriori error estimation and adaptivity.
- Solution of the convection-diffusion equation. Stabilized formulations for convection-dominated problems.

<table>
<thead>
<tr>
<th>FEM for incompressible flow problems</th>
<th>Learning time: 6h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theoretical classes: 4h</td>
<td>Practical classes: 2h</td>
</tr>
</tbody>
</table>

Description:
- Weak form and discretization of the Stokes equations. Stable FEM discretizations for incompressible flow problems: LBB condition.
- Application to microfluidics and geophysics.
- Introduction to the numerical solution of the incompressible Navier-Stokes equations.
- Introduction to eXtended FEM (X-FEM) for two-phase problems.

<table>
<thead>
<tr>
<th>FEM for wave problems</th>
<th>Learning time: 10h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theoretical classes: 4h</td>
<td>Laboratory classes: 6h</td>
</tr>
</tbody>
</table>

Description:
- FEM solution of the 1D wave equation. FEM solution of Helmholtz equation. Non-reflecting boundary conditions.
- Application to acoustics.
- Introduction to DG for first order conservation laws. Application to acoustics and electromagnetics.
Stochastic FEM

<table>
<thead>
<tr>
<th>Description:</th>
</tr>
</thead>
</table>

Learning time: 16h

- Theory classes: 8h
- Laboratory classes: 8h

Exams (50%) and continuous assessment (exercises, projects and/or oral presentations) (50%).

Bibliography

Basic:

Complementary: