34966 - VD - Differentiable Manifolds

Coordinating unit: 200 - FME - School of Mathematics and Statistics
Teaching unit: 749 - MAT - Department of Mathematics
Academic year: 2017
Degree: MASTER'S DEGREE IN ADVANCED MATHEMATICS AND MATHEMATICAL ENGINEERING (Syllabus 2010). (Teaching unit Optional)
ECTS credits: 7,5 Teaching languages: English

Teaching staff
Coordinator: EVA MIRANDA GALCERÁN
Others: Segon quadrimestre:
EVA MIRANDA GALCERÁN - A
MIGUEL CARLOS MUÑOZ LECANDA - A

Prior skills
Basic courses on algebra, calculus, topology and differential equations, and calculus on manifolds. Students from the FME are supposed to have taken "Varietats Diferenciables" (optional 4th year course).

This is not a basic course and the students are assumed to have attended previous courses on differential geometry and smooth manifolds. Students feeling that they may not fulfill the requisites are invited to discuss their case with the lecturers. It is totally possible for prospective students with a lesser knowledge in these topics to follow this course provided they are willing to make up for the gap with individual work during the course and/or by reading some recommended bibliography prior to the beginning of the course.

Degree competences to which the subject contributes

Specific:
1. RESEARCH. Read and understand advanced mathematical papers. Use mathematical research techniques to produce and transmit new results.
2. CALCULUS. Obtain (exact or approximate) solutions for these models with the available resources, including computational means.
3. CRITICAL ASSESSMENT. Discuss the validity, scope and relevance of these solutions; present results and defend conclusions.
4. SELF-DIRECTED LEARNING. Detecting gaps in one's knowledge and overcoming them through critical self-appraisal. Choosing the best path for broadening one's knowledge.
5. EFFICIENT ORAL AND WRITTEN COMMUNICATION. Communicating verbally and in writing about learning outcomes, thought-building and decision-making. Taking part in debates about issues related to the own field of specialization.
6. THIRD LANGUAGE. Learning a third language, preferably English, to a degree of oral and written fluency that fits in with the future needs of the graduates of each course.
7. EFFECTIVE USE OF INFORMATION RESOURCES. Managing the acquisition, structure, analysis and display of information from the own field of specialization. Taking a critical stance with regard to the results obtained.
The subject focuses on some of the fundamental topics of differential geometry and its applications in different areas, as geometric mechanics, control theory, classic and quantum field theory, fluid mechanics, computer vision, geophysical dynamics, general relativity and more.

By the end of the course, students should be able to:
- understand all the ideas developed along the course.
- apply the studied concepts to other areas of pure mathematics, physics and engineering.
- integrate in a research group on these kinds of topics and their applications.
- search and understand the scientific literature on the subject.
- write and present an essay on mathematics.

Study load

<table>
<thead>
<tr>
<th>Total learning time: 187h 30m</th>
<th>Hours large group:</th>
<th>60h</th>
<th>32.00%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self study:</td>
<td>127h 30m</td>
<td>68.00%</td>
<td></td>
</tr>
</tbody>
</table>
Content

<table>
<thead>
<tr>
<th>Reminder of Manifold Theory and Exterior Calculus</th>
<th>Learning time: 12h 52m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description:</td>
<td></td>
</tr>
<tr>
<td>Brief survey of manifold theory and differential geometry. Manifolds, atlases, smooth maps, tangent vectors and vector fields, flows, exterior calculus.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lie groups and Lie algebras. Actions on Manifolds</th>
<th>Learning time: 25h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description:</td>
<td></td>
</tr>
<tr>
<td>Introduction to the main aspects of the theory of Lie groups and their actions on manifolds, including classic groups, subgroups, actions, orbits and quotients.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Principal Bundles</th>
<th>Learning time: 18h 45m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description:</td>
<td></td>
</tr>
<tr>
<td>The concept of fibre bundles and local triviality will be introduced. Then we define the main object of study, principal bundles and their main example, frame bundles, as well as their properties.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Connections and Curvature</th>
<th>Learning time: 18h 45m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description:</td>
<td></td>
</tr>
<tr>
<td>We introduce connections on principal bundles and study their existence and main constructions and properties, as curvature, holonomy, parallelism and structure equations.</td>
<td></td>
</tr>
</tbody>
</table>
Vector Bundles and Associated Bundles

Description:
We will study constructions in bundle theory, as associated and pullback bundles, and the theory of general vector bundles. The main objective is to introduce connections on vector bundles and their properties, as well as their relationship with connections on principal bundles. Tubular neighbourhood theorem. Introduction to Differential Topology.

Learning time: 18h 45m
Theory classes: 6h
Self study: 12h 45m

De Rham Cohomology and Integration Theory

Description:
We define De Rham cohomology and compare to other cohomologies. We will also introduce De Rham computation kit and Poincaré duality.

Learning time: 25h
Theory classes: 8h
Self study: 17h

Symplectic and Poisson Geometry

Description:
Introduction to symplectic and Poisson manifolds with emphasis on examples. Starting with symplectic manifolds, we will explain Moser's trick and some applications to normal form theorems such as the Darboux theorem or the Lagrangian neighbourhood theorem. Special attention will be given to examples provided by the realm of integrable systems. We end the chapter introducing the basic concepts in Poisson geometry.

Learning time: 43h 45m
Theory classes: 14h
Self study: 29h 45m

Qualification system

There will be a final exam, as well as the possibility to write an optional essay that would contribute to the final grade. Students would choose, together with the lecturers, a topic that complements or advances the material taught during the course, according to their mathematical interests.
34966 - VD - Differentiable Manifolds

Regulations for carrying out activities

The final grade awarded to the student would be computed as follows:

- **Case A**: an student that does only the final exam. Then the final grade would be that of the exam.
- **Case B**: an student that does the final exam AND submits a written essay. Then the final note would be the result of \[\text{MAX}(\text{exam}, 40\% \ \text{exam} \ + \ 60\% \ \text{(essay+ exercises)})\]

Bibliography

Basic:

Complementary:

